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Cuts in Graphs

Let G = (V ,E ) be a graph. Throughout, let |V | = n and |E | = m.

U V \ U

Definition

A cut is a partition of V into two non-empty subsets U and V \ U.

Definition

An edge e crosses a cut U if it has one endpoint in U and the other in
V \ U. The value of a cut is the number of edges that cross it.
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Minimum Cuts in Graphs

Definition

The minimum cut problem on a graph G asks us to find a cut of minimum
value. Call this value λ.

Definition

An α-approximate minimum cut is one that has value at most αλ.

Example application: Network reliability analysis

Question: How can we efficiently find minimum and approximate
minimum cuts?

Question: How many minimum cuts can be in a graph with n
vertices? How many α-approximate minimum cuts?
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Karger’s algorithm

The random contraction technique, introduced by Karger (1993), can
answer both of these questions.

Definition

The contraction operation takes a graph G and an edge e ∈ E . It merges
the endpoints of e (removing self-loops) to create the graph G/e.

e v
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Karger’s Algorithm

For an edge e, a cut C = (U,V \ U) will survive the contraction of e
if e does not cross C

e v

U V \ U

U ′

V ′ \ U ′

The smaller a cut C , the more likely C survives the contraction of a
randomly selected edge. In particular, a minimum cut is very likely to
survive random contraction.
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Karger’s Algorithm

Karger’s Algorithm contracts randomly selected edges until only 2
vertices are left, and then returns the cut between those vertices

The smaller a cut C , the more likely C survives.
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Karger’s Algorithm

A given minimum cut C has at least a
(n
2

)−1
chance of surviving all of

the contractions and being returned (Karger 1993)

Theorem (Karger 1993)

There are at most
(n
2

)
= O(n2) minimum cuts in an n-vertex graph.

Furthermore, there are O(n2α) α-approximate minimum cuts.

The bound is tight: take a cycle graph on n vertices
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The Minimum k-Cut Problem

Our work concerns a twofold generalization of the minimum cut
problem: the minimum k-cut problem for hypergraphs.

First, let’s consider k-cuts in graphs.

Definition

A k-way cut (or k-cut for short) is a partition of the vertices V into k
non-empty subsets U1,U2, . . . ,Uk . An edge crosses a k-cut if its vertices
are in different subsets Ui and Uj , and the size of a k-cut is the number of
edges crossing it.

Karger’s algorithm readily generalizes to the k-cut problem - we stop
contraction at k vertices remaining instead of two.
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Hypergraphs

In a graph, edges can connect only two vertices. In a hypergraph, we
allow hyperedges to connect multiple vertices (i.e., each hyperedge
e ∈ E is a subset of V , so E ⊆ 2V .)

The rank of a hyperedge e is the number of vertices associated with
it. The rank of a hypergraph is the maximum rank of a hyperedge.

U V \ U

We generalize the minimum cut and minimum k-cut problems to
hypergraphs.
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Hypergraphs

Hypergraphs can model more general networks than graphs, in which
groups of nodes influence each other.

Example: Communication platforms

Discord

Snapchat

Texting

Email

Carrier Pigeon

C. Bao, J. Wang, W. Zhao k-Cuts in Hypergraphs October 2024 12 / 26



Hypergraphs

Hypergraphs can model more general networks than graphs, in which
groups of nodes influence each other.

Example: Communication platforms

Discord

Snapchat

Texting

Email

Carrier Pigeon

C. Bao, J. Wang, W. Zhao k-Cuts in Hypergraphs October 2024 12 / 26



Random Contraction for Hypergraph k-Cut

We considered a generalization of Karger’s algorithm to the minimum
k-cut problem for low-rank hypergraphs.

Theorem (Kogan and Krauthgamer 2014)

In a rank-r hypergraph H with n vertices, there are at most

O
(
2αrn2α

)
α-approximate minimum cuts.

Theorem (Bao, Pan, Wang, and Zhao 2024+)

In a rank-r hypergraph H with n vertices, there are at most

O
(
kα(k−1)rn2α(k−1)

)
α-approximate minimum k-cuts.
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Karger-Stein Recursive Contraction

Problem with Karger’s Algorithm: Later contractions are likely to
destroy a given minimum cut, wasting the earlier contractions.

Karger and Stein (1995) introduced the recursive contraction
algorithm, which recursively “branches” by periodically duplicating
the graph and running two instances of random contraction

Branches occur at predetermined times: every time |V | decreases by a
factor of

√
2.
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Branching Contraction

Fox et al. (2018) generalized recursive contraction to the hypergraph
k-cut case by introducing the branching contraction algorithm.

Here, there is a chance to randomly create a branch every time an
edge is selected for contraction.

Because larger hyperedges are more likely to destroy a minimum
k-cut, the probability of branching increases with the size of the
contracted hyperedge.

PBranch(e) = 1−
(n−|e|
k−1

)( n
k−1

)
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Contraction Tree

The contracted hypergraphs can be organized into a tree. Although
the tree itself is random, we can still analyze its expected properties.

H

H/e1 H/e2 H/e3

Theorem (Fox et al. 2018)

The branching contraction algorithm finds a minimum k-cut with high
probability in Õ(mn2k−2) expected time
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probability in Õ(mn2k−2) expected time

C. Bao, J. Wang, W. Zhao k-Cuts in Hypergraphs October 2024 17 / 26



Branching Contraction Time Complexity

These bounds are tight for graphs. However, m = O(n2) in a graph,
while m = Ω(2n) is possible in a hypergraph. A finer examination of
the time complexity is needed.

The time complexity cannot be improved for weighted hypergraphs:
take a hypergraph where 2-edges have very large weights. We
considered the case of an unweighted hypergraph

Here, there are bounds relating the proportion of small edges to the
total number of edges. These can be interpreted as constraints in a
linear program.

Theorem (Bao, Pan, Wang, and Zhao 2024+)

For an unweighted hypergraph without parallel edges, the branching
contraction algorithms works in Õ(mnk + n2k) expected time.
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C. Bao, J. Wang, W. Zhao k-Cuts in Hypergraphs October 2024 18 / 26



Branching Contraction Time Complexity

These bounds are tight for graphs. However, m = O(n2) in a graph,
while m = Ω(2n) is possible in a hypergraph. A finer examination of
the time complexity is needed.

The time complexity cannot be improved for weighted hypergraphs:
take a hypergraph where 2-edges have very large weights. We
considered the case of an unweighted hypergraph

Here, there are bounds relating the proportion of small edges to the
total number of edges. These can be interpreted as constraints in a
linear program.

Theorem (Bao, Pan, Wang, and Zhao 2024+)

For an unweighted hypergraph without parallel edges, the branching
contraction algorithms works in Õ(mnk + n2k) expected time.
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Tree Packing

A forest F is a set of edges that contains no cycles. It is a disjoint
union of trees.

Any k-cut intersects every forest F at least |F |+ k − n times.

The converse also holds!

k = 5

|F | = 9

n = 10

|F |+ k − n = 4
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Fractional k-Cut

A k-cut can be viewed as assigning each edge a value of 1 (cut) or 0
(uncut). Instead, let’s assign real values in [0, 1] representing how
much of an edge is cut.

We will call such a cut a fractional k-cut if its weighted intersection
with any forest F is at least |F |+ k − n.

1/3

1/3

1/3

1/3 A fractional 2-cut smaller than the minimum 2-cut

In graphs, the minimum k-cut has value at most 2(1− 1/n) times the
minimum fractional k-cut. Furthermore, the minimum fractional
k-cut is easier to compute.
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Approximating Minimum k-cut Using Tree Packing

Quanrud (2019) begins by computing a (1+ ε)-approximate minimum
fractional k-cut, using linear programming and a technique called
Multiplicative Weight Update.

The fractional k-cut can be “rounded” to a 2(1 + ε)-approximate
minimum k-cut.

Take every edge with weight at least 1/2. If this does not form a
k-cut, then greedily complete with cuts from the minimum spanning
tree (or forest).
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Hypertrees

Definition

A hyperforest is a set of hyperedges F such that any subset X ⊆ F
contains at least |X |+ 1 vertices.

Theorem (Bao, Pan, Wang, and Zhao 2024+)

A minimum hypertree can be computed in O(mn2) time.
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Hypertree Packing

With the concept of a hyperforest, we can generalize the tree packing
method to hypergraphs.

We use the MWU method and greedy rounding to compute a r(1+ ε)
approximation to the minimum k-cut problem in hypergraphs.

Theorem (Bao, Pan, Wang, and Zhao 2024+)

There exists a r(1 + ε)-approximation to minimum k-cut in

O(mn log2 n/ε2 +mn2)

time for hypergraphs, where r is the rank of the hypergraph.
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